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Abstract We report a rigorous examination of the gas phase equilibrium for the Haber
synthesis of ammonia. In a setting of intensive variables and parameters we prove the
existence and uniqueness of an equilibrium solution that corresponds to positive mole
fractions for the constituents of the equilibrium. The uniqueness proof is established
via the Sturm theorem of real algebraic geometry by exhausting all possible cases of
vanishing denominators in the Sturm sequence.
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1 Introduction

Stoichiometry of chemical equilibrium is determined by three classes of equations.
The conservation of total number of atoms of a given element, the conservation of
total charge, and the equilibrium constants. Equations that fall into the first and sec-
ond classes are linear in nature. On the other hand the equilibrium constants usually
constitute nonlinear but algebraic equations. Then the equilibrium solution is found
through a simultaneous solution of this system of equations. When an equation is
nonlinear two major issues to be dealt with are the existence and uniqueness of solu-
tions. True, by Gauss’ fundamental theorem of algebra [1], an algebraic equation has
exactly as many complex roots as its degree, counted with multiplicities. However, this
is not sufficient for the chemist. Negative concentrations, complex pressures, and mole
fractions that are not in the interval (0, 1) are superfluous. An existence proof must
guarantee that there is at least one “acceptable” solution of the equilibrium that assigns
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values to the relevant variables of the problem in their proper ranges. Usually, a more
difficult question is the issue of uniqueness of this “acceptable” solution. This issue
is rarely addressed in the literature partly because of the fact that many equilibrium
systems require resolutions of equations that are of lower degrees where analytical
solutions are readily available.

Two different methods of uniqueness proofs of equilibrium are present in the lit-
erature which are related with the problem that is tackled in this paper, namely the
equilibrium in the Haber synthesis of ammonia. (1) The deficiency zero theorem [2–4]
in chemical reaction network theory states that “nothing exotic happens” in a chemical
reaction network with deficiency zero. That is, there is only one steady state which
is stable and there are no cyclic oscillations that remain in the physically realizable
domain of concentrations. The physical setting is the one where one starts with the
kinetic rate equations that are not necessarily of mass action type and deduce unique-
ness of the steady state. (2) More recently, Powers and Paolucci [5] have extended a
less known uniqueness proof by Zel’dovich [6]. While Zel’dovich’s proof applies to
isothermal–isochoric homogenous mixtures of ideal gases, these authors gave a proof
for the adiabatic case as well. In this method the setting is that of thermodynamics
of ideal systems, where the reactions are reversible. Consequently, approach to the
equilibrium state from arbitrary initial conditions within the dynamics generated by
kinetic rate equations is replaced by the well justified assumption that the system
will sooner or later reach the equilibrium state. The machinery of the proof relies on
the observation that the Hessian matrices of thermodynamic potentials are positive
definite and full rank, therefore their minima are unique.

Here, we offer a non conventional proof of uniqueness for isothermal-isochoric,
ideal, and reversible systems by the tools of real algebraic geometry. Specifically, the
moderately complex case of Haber synthesis of ammonia is considered, although the
method can be generalized to any reversible reaction or system of reactions. In this
sense our work is in the setting of Zel’dovich’s [6] proof. However, unlike Zel’dovich
we do not inquire the nature of the Hessian of Helmholtz free energy, but try to classify
the roots of a polynomial that arises from equilibrium problem itself. We remark that a
uniqueness proof for the adiabatic case, cannot rely upon the constancy of equilibrium
constant and in that case one needs to resort the method suggested by Powers and
Paolucci [5].

There are efficient techniques of numerical analysis, such as that of Raphson and
Newton, to approximately compute the roots of a given equation, be it algebraic or
another kind. However, a computation for a set of specific parameters is never a
surrogate for a generic proof of existence or uniqueness. Because the equations are
algebraic in nature, it makes sense to resort to the powerful tools of real algebraic
geometry in the context of root classification. In fact the core message of this paper
is that real algebraic geometry is an adequate language to address the question of
chemical equilibrium, rigorously. These tools have been proved to be very useful in
the examination of stability in control research through the famous Routh–Hurwitz
[1,7] problem. They have been applied to artificial intelligence [8]. They do have a
role to play in chemical equilibrium.

A quorum of questions that are pertinent to root classification and chemical equi-
librium is as follows [1,9]. Given a polynomial with real coefficients, how many of its
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roots are real, real positive, real negative, or complex with negative real parts? What
are the multiplicities of those roots? These questions can be conclusively settled by
the following tools of real algebraic geometry. Descartes’ rule of signs gives estimates
(upper bounds) for the number of distinct positive and negative roots of a real poly-
nomial. Budan–Fourier theorem also gives an estimate (upper bound) of the number
of distinct real roots of a real polynomial in a given interval (a, b). Euclidean division
algorithm for polynomials can detect if a given polynomial has multiple roots without
computing the root itself. Repeated application of Euclidean division algorithm also
identifies the multiplicities of all roots. The powerful Sturm’s theorem [10] gives the
exact number of distinct real roots of a real polynomial in a given finite or infinite
interval (a, b). In this sense it is a major improvement of Descartes’ rule of signs
and the Budan–Fourier theorem. More recently techniques have been developed to
increase the efficiency of Sturm’s theorem that rely on Sturm–Habicht sequences [11]
or Sylvester’s discrimination matrix [12,13]. They have been extended to polynomials
with complex coefficients [14], counting the positive roots of a polynomial [15], and
efficient computations of Tarski query [16]. We remark that all of these algorithms ter-
minate after finite number of operations, require finite memory, and with the exceptions
of Descartes’s rule of signs and Budan–Fourier theorem, they are powerful enough to
give exact results. This contrasts with the iterative techniques of root computations in
numerical analysis where convergence is achieved only up to a prescribed numerical
precision.

Although some of the aforesaid tools are relatively old, the problem of root classi-
fication is by no means trivial today. For instance a complete root classification for a
fourth order equation has only been given in 1988 by Arnon [8] in the context of arti-
ficial intelligence. In the context of stability Jury and Mansour [7] gave the positivity
and non negativity conditions for a quartic equation in 1981. This is despite the fact
that analytical solutions of quartic (fourth order) equations are known since the time
of Cardano and Ferrari ca. 1500 AD. Root classification of a depressed quintic (fifth
order) equation is given by Yang et al. [12] in 1996. Yang [13] also gave the root clas-
sification of a sextic (sixth order) polynomial. Why the century long lag between the
proof and exploitation of Sturm’s theorem? The answer lies within the long expres-
sions that quickly run out of hand during the computation of Sturm sequence. The
tedious work in Sect. 3 and 4 where factorizations of expressions that are of degree 17
are involved, as well as the 296 sign examinations of Table 1 demonstrate this. One can
disentangle these obstacles by a computer algebra system (CAS). In our computations
we relied on open-axiom [17] CAS.

In this paper we study ammonia synthesis from nitrogen and hydrogen for two
reasons. First, ammonia is a precursor in the industrial synthesis of many nitrogen
containing compounds including ammonium nitrate, a compound that can act as an
artificial fertilizer and of great importance in agricultural production [18]. Therefore an
understanding of the industrial production of ammonia is always of interest. Secondly,
ammonia synthesis with its few constituents is elementary enough to demonstrate the
application of Sturm’s theorem. And since the equilibrium yields a fourth order equa-
tion, it is also complicated enough to be counted as nontrivial. While thermodynamics
allows the formation of ammonia from its elements particularly at high pressures, since
the days of Haber [19], the focus of research has been to find an adequate catalyst or

123



902 J Math Chem (2014) 52:899–916

Ta
bl

e
1

Si
gn

s
of

th
e

po
ly

no
m

ia
ls

in
St

ur
m

se
qu

en
ce

of
P

(Y
)

of
E

q.
(2

4)
ev

al
ua

te
d

at
−1

/4
an

d
0

D
1

D
2

D
3

D
4

D
5

P 0
(

−1 4
)

P 1
(

−1 4
)

P 2
(

−1 4
)

P 3
(

−1 4
)

P 4
(

−1 4
)

w
(

−1 4
)

P 0
(0

)
P 1

(0
)

P 2
(0

)
P 3

(0
)

P 4
(0

)
w

(0
)

C
ou

nt

A
,E

−
−

−
−

−
+

−
+

+
−

3
−

+
+

+
−

2
1

B
,F

−
−

+
−

−
+

−
+

+
−

3
−

+
+

−
−

2
1

C
,G

+
−

+
−

−
−

+
−

−
+

3
+

−
−

+
+

2
1

D
−

−
−

+
−

+
−

+
−

−
3

−
+

+
+

−
2

1

H
,M

,P
−

+
−

−
−

+
−

+
+

−
3

−
−

+
−

−
2

1

I,
N

,Q
−

+
+

−
−

+
−

+
+

−
3

−
−

+
+

−
2

1

J
+

+
+

−
−

−
+

−
−

+
3

+
+

−
−

+
2

1

K
−

+
−

+
−

+
−

+
−

−
3

−
−

+
−

−
2

1

L
,S

+
+

+
−

+
−

+
−

−
−

2
+

+
−

−
−

1
1

O
,R

−
+

+
−

+
+

−
+

+
+

2
−

−
+

+
+

1
1

α
1

−
−

0
−

−
+

−
+

+
−

3
−

+
+

0
−

2
1

α
2

−
+

0
−

−
+

−
+

+
−

3
−

−
+

0
−

2
1

β
1

−
−

−
0

−
+

−
+

0
−

3
−

+
+

+
−

2
1

β
2

−
+

−
0

−
+

−
+

0
−

3
−

−
+

−
−

2
1

γ
1

+
+

+
−

0
−

+
−

−
0

2
+

+
−

−
0

1
1

γ
2

−
+

+
−

0
+

−
+

+
0

2
−

−
+

+
0

1
1

δ 1
+

−
+

+
2

−
+

+
+

1
1

δ 2
+

−
+

−
3

−
−

+
−

2
1

δ 3
−

+
−

−
2

+
+

−
−

1
1

δ 4
+

−
+

+
2

−
−

+
+

1
1

η
1

+
−

+
−

3
−

+
+

−
2

1

η
2

+
−

+
+

2
−

−
+

+
1

1

η
3

−
+

−
−

2
+

+
−

−
1

1

In
al

lc
as

es
th

e
nu

m
be

r
of

di
st

in
ct

ro
ot

s
of

P
(Y

)
in

th
is

in
te

rv
al

,w
hi

ch
is

gi
ve

n
by

th
e

“c
ou

nt
”,

i.e
.w

(−
1/

4)
−w

(0
),

in
th

e
la

st
co

lu
m

n
is

1
w

hi
ch

es
ta

bl
is

he
s

th
e

un
iq

ue
ne

ss
of

eq
ui

lib
ri

um
.L

at
in

la
be

ls
si

gn
if

y
th

e
2-

D
re

gi
on

s
in

Fi
g.

2
w

he
re

as
G

re
ek

la
be

ls
si

gn
if

y
th

e
1-

D
le

ve
ls

et
s

th
at

ar
e

ob
ta

in
ed

by
se

tti
ng

D
3−

5
,

E
,a

nd
p

to
ze

ro

123



J Math Chem (2014) 52:899–916 903

to improve a known one for the process to overcome kinetic barriers. Accordingly,
research in engineering has focused on [20,21] reactor optimization through kinetic
models, while theoretical research in physical sciences recently applied first princi-
ples calculations [22,23] to investigate the catalytic properties of nano particles and
there have been experimental studies to eliminate the high pressure requirement [24]
via electrochemical reactors. By proving the uniqueness of equilibrium in the Haber
process, we hope to fill a void that has not been addressed in the theoretical studies of
ammonia synthesis.

The rest of the paper is organized as follows. In Sect. 2 we describe the system to
be studied in detail and give a short and easy proof of existence for the equilibrium
solution. Sections 3 and 4 exploit Sturm’s theorem for the proof of uniqueness of the
equilibrium solution by exhausting all possible cases. Section 5 closes the paper with
a discussion.

2 Background

The gas phase synthesis of ammonia from molecular nitrogen and hydrogen is given
by the following equilibrium reaction.

N2(g) + 3H2(g) � 2NH3(g) (1)

Assuming the ideal behavior for the gases, we have the following equilibrium constant
given in terms of mole ratios

κ := x2
NH3

xN2 x3
H2

(2)

where xX signifies the mole ratio of the compound (or element) X and κ is the equi-
librium constant. Equation (2) must be provided with two more equations in order
to solve for the three unknowns. Those remaining equations can be easily retrieved
through the law of conservation of mass. Since the reaction tank is closed, the total
number of hydrogen and nitrogen atoms are fixed. This gives us two linear equations.

n := 2NN2 + NNH3 (3)

h := 2NH2 + 3NNH3 (4)

Here n and h are the total number of nitrogen and hydrogen atoms, respectively. NX
signifies the number of X molecules in the equilibrium. κ , n, and h are invariants
(parameters) of the system. These three numbers provide a complete description of
the problem. Define the total number of molecules as follows.

NT := NH2 + NN2 + NNH3 (5)

It is easy to deduce that n + h = 2NT + 2NNH3 . If one divides both sides of Eq. (3)
by n + h, exploits Eq. (5), and uses the fact that xN2 := NN2/NT, then one arrives at
the following equation
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xN2 = ν +
(

ν − 1

2

)
xNH3 (6)

where
ν := n

n + h
. (7)

Obviously, ν ∈ (0, 1). Note that the definition of ν given in Eq. (7) will reduce the
number of parameters from three to two. Furthermore, unlike the set of parameters
(κ, n, h), the new set of parameters (κ, ν) consists of intensive quantities only. In a
similar fashion, if one divides both sides of Eq. (4) by n + h and observes the fact that
the left hand side is nothing but 1 − ν, then after a simple rearrangement one obtains
that

xH2 = 1 − ν −
(

ν + 1

2

)
xNH3 . (8)

Although, at this point we can substitute Eqs. (6) and (8) into Eq. (2) and solve for
xNH3 , in our experience it is better to study the problem in the quantity

x := NNH3

n + h
= xNH3

2 + 2xNH3

. (9)

Since xNH3 ∈ (0, 1), this implies that x ∈ (0, 1/4). It is a simple exercise to rearrange
Eq. (9) to read

xNH3 = 2x

1 − 2x
. (10)

The transformation in Eq. (10) is a monotonic one in the interval x ∈ (0, 1/4), i.e. the
correspondence between x and xNH3 is one to one. Hence, uniqueness of the solution
in one variable implies the uniqueness for the other.

Now, if one substitutes Eqs. (6, 8, 10) into Eq. (2) and rearranges so that κxN2 x3
H2

−
x2

NH3
= 0, one obtains a rational function in x . The denominator of this rational

function is (x − 1/2)4 and since x ∈ (0, 1/4) this denominator (which is always a
positive number) is not singular in the interval of interest. Therefore it is justified to
focus on the numerator only. It is

Ax4 − Ax3 + Bx2 + Cx + D = 0 (11)

where the coefficients are defined as follows.

A := 27

16
κ − 1, (12)

B := 9

8
κ(1 − ν)(ν + 1/2) − 1

4
, (13)

C := −1

2
κ(1 − ν)2(ν + 1/8), (14)

D := 1

16
κν(1 − ν)3. (15)
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In this setting two major cases manifest themselves for separate exploration. Case
I: A = 0, i.e. κ = 16/27. Then the degree of Eq. (11) suffers a reduction and one
studies a simpler equation of degree 2. It is

f (x) := ax2 + bx + c = 0 (16)

where

a := −2ν2 + ν + 1

4
, (17)

b := −8

9
(1 − ν)2(ν + 1/8), (18)

c := 1

9
ν(1 − ν)3. (19)

Again, it is possible to split this case into two. Case I.a: a = 0, i.e. ν = ν∓ := (1 ∓√
3)/4. ν− /∈ (0, 1) and hence it can be disregarded. On the other hand when ν = ν+,

the solution of the linear equation bx + c = 0 reads x = ν+(1 − ν+)/(8ν+ + 1) =
1/(16 + 8

√
3) ∈ (0, 1/4). Case I.b: a �= 0. We have the following factorization for

the discriminant of Eq. (16).

b2 − 4ac = 8

81
(1 − ν)3(ν + 1/2)3 > 0 (20)

Thus there are two (distinct) real roots of Eq. (16). Furthermore, since

f (0) f (1/4) = − ν

81
(1 − ν)3

(
ν4 − ν3 + 3ν2

8
− ν

16
+ 7

64

)
(21)

and the quartic term in Eq. (21) has no real roots as can be verified easily by a CAS,
f (0) f (1/4) < 0 which means Eq. (16) has at least one real root in (0, 1/4) by the
mean value theorem. It cannot have two real roots, for otherwise we would have a
positive sign in Eq. (21). This proves the uniqueness for case I.b.

The other major case and the focus of the remaining part of the paper is realized
when A �= 0, i.e. κ �= 16/27. Then it is possible to reduce Eq. (11) to a monic equation
by dividing both sides by A and x is the root of

P(X) := X4 − X3 + B

A
X2 + C

A
X + D

A
. (22)

Polynomial P(X) allows us to give a generic proof for the existence of equilibrium:
There exists an x ∈ (0, 1/4) such that P(x) = 0. To prove this statement observe that

P(0)P(1/4) = −κν(1 − ν)3(κ(4ν − 1)4 + 16)

256(16 − 27κ)2 < 0 (23)
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where P(0) and P(1/4) can be evaluated and factorized by a CAS. By the intermediate
value theorem, the continuous function P(X) has a root in the interval (0, 1/4).

While the existence proof is easy, the uniqueness requires more work. We begin
with bringing Eq. (22) to its depressed form. To that end we define X =: Y + 1/4 and
substitute this into Eq. (22) to read

P(Y ; κ, ν) := Y 4 + pY 2 + qY + r (24)

where the coefficients p, q, and r are defined as follows.

p := 9κ(4ν − 1)2 − 16

8(16 − 27κ)
, (25)

q := κ(4ν − 1)3

8(16 − 27κ)
, (26)

r := κ(4ν − 1)4 + 16

256(16 − 27κ)
. (27)

When there is no ambiguity, we will drop the κ and ν dependence of P in Eq. (24). It
is obvious that we must seek the root of P(Y ) in the interval (−1/4, 0).

3 Application of Sturm’s theorem

Given a polynomial with real coefficients, the powerful Sturm’s theorem gives the
exact count of distinct roots in the interval (a, b). When this interval is infinite, Sturm
theorem yields the number of distinct real roots. When it is semi infinite, one can
deduce the number of distinct positive or negative roots. While we recapitulate the
theorem here for completeness, the details of the proof can be found in elsewhere
[1,9,10].

Let P(Y ) be a polynomial with real coefficients. Define P0(Y ) := P(Y ) and
P1(Y ) := P ′(Y ) where the prime signifies the derivative. The Sturm sequence of P(Y )

is Sturm(P(Y )) := {P0(Y ), P1(Y ), . . . , Pn(Y )} where the rest of the polynomials in
this sequence are defined through the Euclidean division.

Pk(Y ) = Ak(Y )Pk+1(Y ) − Pk+2(Y ) (28)

Here Pk+1(Y ) is the divisor, Pk+2(Y ) is the remainder, and Ak(Y ) is the quo-
tient which [together with Pk+2(Y )] is uniquely determined by the requirement that
deg(Pk+2) < deg(Pk+1) where deg signifies the degree of a polynomial. The sequence
terminates when one reaches a constant (or zero) remainder in Eq. (28). Define
w(y) := Var{sgn(P0(y)), . . . , sgn(Pn(y))} as the total number of sign disagreements
between the consecutive terms of Sturm sequence at a specific value y. Here sgn(x) is
the usual signum function that returns the sign of x . Then the number of distinct real
roots of P(Y ) in the interval (a, b) is given by w(a) − w(b).

Several remarks are in order. (1) In the count of sign variations zeros are disregarded.
Thus Var{+ − 0 + +} = Var{+0 − ++} = Var{+ − ++} = 2. (2) If the coefficients
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of P0 are rational, then so are the coefficients of all polynomials in the Sturm sequence
of P0. While this closure is a nice property for abstract algebra, in the numerical com-
putations these rational coefficients turn out to be ratios of two very long and mutually
prime integers as one progresses in the Sturm sequence. Therefore special data struc-
tures for long numbers are required in the numerical implementations. (3) When the
coefficients are literal or symbolic the algorithm is very demanding on the memory
and can be intractable even for polynomials of moderate degree. Yang et al. [12] report
that for a polynomial of degree 7, their computation suffered memory overflow after
running approximately 1,000 s. (4) The Sturm sequence can be computed after finite
number of operations.

In what follows we will assume that κ �= 16/27, p �= 0, E �= 0 where

E := 8pr − 9q2 − 2p3, (29)

and compute the Sturm sequence of P(Y ) =: P0(Y ) as defined in Eq. (24). This is
indicated as case II in the tree depicted in Fig. 1. Now, P1(Y ) is particularly easy.

P1(Y ) = 4Y 3 + 2pY + q (30)

The rest of the terms in the Sturm sequence can be computed with a CAS and well
known in the literature [9]. They are

P2(Y ) = − p

2
Y 2 − 3q

4
Y − r, (31)

P3(Y ) = (8pr − 9q2 − 2p3)Y − q(p2 + 12r)

p2 , (32)

P4(Y ) = p2 Z

4(8pr − 9q2 − 2p3)2 (33)

Fig. 1 There a total of five distinct cases in the examination of the uniqueness of solutions in the synthesis
of ammonia. This binary tree depicts the paths of realizations for those cases. For the definitions of p, q,
and E see Eqs. (25), (26), and (29), respectively
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where
Z := 256r3 − 128p2r2 + 144prq2 + 16p4r − 27q4 − 4q2 p3. (34)

(Note that the +16p4r term in Z has an incorrect sign in Basu, Pollack, and Roy. See
page 21 in their text [9]).

With the Sturm sequence given above we need to compute w(−1/4) and w(0).
This necessitates the evaluation of the polynomials in the Sturm sequence of P(Y )

at −1/4 and 0. We start with the relatively easy case of Y = 0. P0(0) = r and
sgn(r) = sgn(D1) where

D1 := 16 − 27κ. (35)

It is obvious that D1 �= 0. P1(0) = q and sgn(q) = sgn(D2/D1) where

D2 := 4ν − 1. (36)

P2(0)=−r and sgn(−r) =−sgn(D1). P3(0) = −q(p2 +12r)/p2 and the denominator
is irrelevant for the sign determination. Now, through a CAS we deduce that

− q(p2 + 12r) = −κ(4ν − 1)3 D3

(16 − 27κ)3 . (37)

where
D3 := 3κ(ν − 1)(2ν + 1)(4ν2 − 2ν + 1) + 2. (38)

Clearly sgn(P3(0))=−sgn(D2 D3/D1). Note that sgn(P4(0)) = sgn(P4(−1/4)) =
sgn(Z) and the sign analysis of this expression is explored in the next paragraph.

Secondly, we evaluate the Sturm sequence at Y =−1/4. Through a CAS we find that

P0(−1/4) = κν(ν − 1)3

16 − 27κ
. (39)

Since by definition ν ∈ (0, 1), sgn(P0(−1/4)) = −sgn(D1). Likewise

P1(−1/4) = κ(ν − 1)2(8ν + 1)

16 − 27κ
(40)

and clearly sgn(P1(−1/4)) = sgn(D1). As for P2(−1/4) we have

P2(−1/4) = −κ(ν − 1)2(4ν − 1)2

16(16 − 27κ)
(41)

and sgn(P2(−1/4)) = 0 if ν = 1/4. Otherwise, sgn(P2(−1/4)) = −sgn(D1). The
next item in our list is P3(−1/4) and as before we disregard the p2 term that appears
in the denominator of Eq. (32) as it is inconsequential in the sign designation.

p2 P3(−1/4) = κ(ν − 1)2 D4

(16 − 27κ)3 (42)
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Here D4 is defined as follows.

D4 := 64ν(ν − 1) − 3κ(2ν + 1)(4ν − 1)2(16ν2 − 14ν + 1) (43)

The sign of P3(−1/4) is given by sgn(D4/D1). The final expression for sign deter-
mination is Z as given in Eq. (34). With the aid of a CAS we have the following
factorization.

Z = 16κ2(ν − 1)3(2ν + 1)3 D5

(16 − 27κ)5
(44)

Here D5 is defined as follows.

D5 := κ(ν − 1)(2ν + 1)(4ν − 1)4 + 16ν(2ν − 1) (45)

Clearly, sgn(Z) = −sgn(D5/D1).
Expressions D1−5 and their signs are quintessential in the root counting. To that

end we first prepared Fig. 2 where the level sets, i.e. the solutions of Di = 0, of these
expressions are displayed in the νκ plane. The level sets of D1 and D2 are particularly
easy. They are displayed as horizontal and vertical bold lines in Fig. 2, respectively.
On the other hand D3 = 0 level set yields the following relation between κ and
ν.

κ3(ν) := 2

3(1 − ν)(2ν + 1)(4ν2 − 2ν + 1)
(46)

κ3(ν) has two real singularities at ν = −1/2 and ν = 1 which are both out of the
interval (0, 1). D4 = 0 yields another level curve κ4(ν). It is

κ4(ν) := 64ν(ν − 1)

3(2ν + 1)(4ν − 1)2(16ν2 − 14ν + 1)
. (47)

Unfortunately, some of the singularities of κ4(ν) fall into the interval (0, 1). This
function is singular at the points {−1/2, ν1 ≈ 0.07846484, 1/4, ν2 ≈ 0.79653517}.
With the exception of the singularity at −1/2, the rest are visible in Fig. 2. Finally,
D5 = 0 gives

κ5(ν) := 16ν(2ν − 1)

(1 − ν)(2ν + 1)(4ν − 1)4 . (48)

Function κ5(ν) has singularities at points {−1/2, 1/4, 1}. However, at the singularity
at ν = 1/4, κ5 tends to −∞ and it cannot be seen in Fig. 2. Also note that, since
the κ axis is in logarithmic scale, the root of the numerator at ν = 1/2 appears as a
singularity even though the function simply vanishes at 1/2.

Once the regions that are in the νκ plane are labeled, one must proceed to the
designation of the signs of D1−5 in these regions. This is best illustrated for D1 and
D2. Now, by Eq. (35) D1 < 0 for all κ > 16/27. Therefore all regions that are above
the κ = 16/27 line in Fig. 2 yield a negative sign for D1. While those below this line
produce a positive sign. Likewise, by Eq. (36) in the regions where ν < 1/4, sign of
D2 is negative. These regions fall to the left of ν = 1/4 line in Fig. 2. Arguments
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Fig. 2 Illustration of the level sets of D1−5 in the νκ plane. The κ axis is on the logarithmic scale. ν1
and ν2 are the singularities of κ4. (For their values, refer the text.) There are a total of 19 different regions
labeled with capital letters in which the signs of D1−5 must be determined in the application of Sturm’s
theorem. They are ordered from top to bottom so that the small region N is sandwiched in between the
regions M and O

similar to these can be made for D3−5. Since the signs of Pi at −1/4 and 0 simply
depend on D1−5 or their products, one can easily determine w(−1/4) and w(0). Table 1
gives the signs of the polynomials in the 19 regions as depicted in Fig. 2. However,
in the sign designation it turns out that there are only 10 distinct cases. In each case
the last column of Table 1 gives the number of distinct roots of P(Y ) as 1 in the
interval (−1/4, 0). This proves that the equilibrium solution of the Haber process
when the values of the parameters ν, κ fall into the 2-D regions as labeled in Fig. 2 is
unique.

This exercise is incomplete. The signum function also returns the value of 0 when
its argument vanishes. Those cases must be studied, too. With the exception of case I,
all other cases of Fig. 1 follow the situation κ �= 16/27. Therefore D1 �= 0.
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(1) D2 = 0 implies that ν = 1/4. This specific case simplifies Eq. (24) to the
following form.

P(Y ; κ, 1/4) = Y 4 − 2

16 − 27κ
Y 2 + 1

16(16 − 27κ)
(49)

Although P(y; κ, 1/4) = 0 is still a fourth order equation, it can be analyzed by
the well known techniques that are developed for the second order equations if one
substitutes the transformation T := Y 2. Through simple algebra we have the solutions
of P(y; κ, 1/4) = 0 rearranged in the following form.

y1,2,3,4 = ±1

4

√√√√ 1

1 ±
√

27κ
16

(50)

It is a simple exercise to verify that only the sign combination −+ (from left to right)
provides a solution for y in the interval (−1/4, 0) which establishes the uniqueness
for this case.

(2) D3 = 0 implies the relation κ = κ3(ν) as given in Eq. (46). Since κ3(ν) > 16/27
as can be verified from Fig. 2, sgn(D1) = − along this curve. Likewise, sgn(D2) is
not affected by this situation and it is − when ν ∈ (0, 1/4) and + when ν ∈ (1/4, 1).
To designate the signs of D4 and D5 along the κ3(ν) curve, one substitutes κ = κ3(ν)

into Eqs. (43) and (45). Upon factorization with a CAS we have

D4 = 2(2ν + 1)(8ν2 − 4ν − 1)2

(ν − 1)(4ν2 − 2ν + 1)
, (51)

D5 = −2(8ν2 − 4ν − 1)2

3(4ν2 − 2ν + 1)
. (52)

Neither D4 nor D5 has any singularities in the interval of interest. Both have the
same root at ν = ν+. However, since κ3(ν+) = 16/27 we can safely disregard this
situation. Hence sgn(D4) = sgn(D5) = −. Therefore along the κ3(ν) curve we
have two segments, i.e. 1-D point sets. They are α1 = {ν ∈ (0, 1/4), κ = κ3(ν)}
and α2 = {ν ∈ (1/4, 1)\{ν+}, κ = κ3(ν)}. Table 1 gives the sign situations of
polynomials and along both segments uniqueness of the root is established.

(3) D4 = 0 implies that κ = κ4(ν) as given in Eq. (47). First, we note that κ ∈
(0,∞)\{16/27} only if ν ∈ (ν1, ν2)\{1/4, ν+}. Therefore our analysis is restricted to
this interval. Since κ4(ν) > 16/27, sgn(D1) < 0 when ν is in the interval of interest.
As before the value of κ is immaterial for sgn(D2). If ν ∈ (ν1, 1/4) then sgn(D2) < 0,
whereas if ν ∈ (1/4, ν2) then sgn(D2) > 0. As for the signs of D3 and D5 we follow
the usual procedure of substituting κ = κ4(ν) into Eqs. (38) and (45) and factorize
the results to read
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D3 = 2(2ν + 1)(8ν2 − 4ν − 1)2

(4ν − 1)2(16ν2 − 14ν + 1)
, (53)

D5 = 16ν(8ν2 − 4ν − 1)2

3(16ν2 − 14ν + 1)
. (54)

Though there are singularities in D3 and D5 at {1/4, ν1, ν2}, these cases are disregarded
in our analysis. Likewise, both of these expressions have a positive root at ν = ν+
which is also excluded since κ4(ν+) = 16/27. Thus in the interval (ν1, ν2)\{1/4, ν+},
sgn(D3) = sgn(D5) = −. Finally we divide κ4(ν) curve into two segments. β1 =
{ν ∈ (ν1, 1/4), κ = κ4(ν)} and β2 = {ν ∈ (1/4, ν2)\{ν+}, κ = κ4(ν)}. Table 1 sum-
marizes the sign situations for this case and its last column establishes the uniqueness.

(4) D5 = 0 or equivalently κ = κ5(ν). Equation (48) or Fig. 2 reveals that when
ν ∈ (0, 1/2), κ5(ν) < 0. Likewise, κ5(ν+) = 16/27. Hence we focus on the interval
(1/2, 1)\{ν+}. Since κ5(ν) < 16/27 when ν ∈ (1/2, ν+), sgn(D1) = + when ν is
in this interval. Likewise, when ν ∈ (ν+, 1), sgn(D1) = −. Obviously sgn(D2) = +
when ν ∈ (1/2, 1). Upon substitution of κ = κ5(ν) into Eqs. (38) and (43) and
factorization we have

D3 = 2(8ν2 − 4ν − 1)2

(4ν − 1)4 , (55)

D4 = 16ν(8ν2 − 4ν − 1)2

(ν − 1)(4ν − 1)2 . (56)

The singularities of D3 and D4 do not fall into the interval of (1/2, 1). Furthermore their
common root at ν = ν+ is also excluded from our analysis. We divide κ5(ν) curve into
two segments. γ1 = {ν ∈ (1/2, ν+), κ = κ5(ν)} and γ2 = {ν ∈ (ν+, 1), κ = κ5(ν)}.
The situation of signs and the uniqueness of the root is established in Table 1.

4 Specializations

Although the Sturm sequence computed in Eqs. (30–33) is used in the analysis of the
previous section the results do not apply if, say, p = 0 since the denominator of P3(Y )

is p2. In the cases of zero denominators, Sturm sequence must be calculated anew. In
this section we explore those exceptional cases. In the parlance of algebraic geometry
these exceptional cases are called specializations.

4.1 Case III: κ �= 16/27 ∧ p �= 0 ∧ E = 0

By Eq. (29) E = 0 implies that

4κG(κ, ν)

(27κ − 16)3 = 0 (57)

where G(κ, ν) := 27κ(ν − 1)ν(2ν − 1)(2ν + 1)(4ν − 1)2 + 2(32ν4 − 32ν3 + 48ν2 −
20ν − 1). Clearly, for Eq. (57) to hold one must have G(κ, ν) = 0. This yields a
relation between κ and ν. It is
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κIII(ν) := 2(32ν4 − 32ν3 + 48ν2 − 20ν − 1)

27(1 − ν)ν(2ν − 1)(2ν + 1)(4ν − 1)2 . (58)

κIII(ν) has singularities at ν = 1/4 and ν = 1/2 in the interval of interest. Since
κIII(ν+) = 16/27, ν = ν+ must also be disregarded. Furthermore, numerator of
Eq. (58) has two real roots at −0.04498992 and νa ≈ 0.54498992. Consequently,
in the interval (1/2, νa), κIII(ν) attains negative values and hence our analysis must
exclude this interval as well as the points in {1/4, 1/2, ν+}.

The Sturm sequence given in Eqs. (30–33) are valid except that P4(Y ) is no more
needed and P3(Y ) is now a constant. It is

P3(Y ) = −q(p2 + 12r)

p2 . (59)

In the coefficients p, q, and r one substitutes κ = κIII(ν).
At Y = 0 the polynomials in the Sturm sequence are evaluated and factorized as

follows.

P0(0) = −P2(0) = − (4ν − 1)2 J (ν)

6912(8ν2 − 4ν − 1)3 , (60)

P1(0) = (1 − ν)2(4ν − 1)2 H(ν)

16
, (61)

where H(ν) := (32ν4 − 32ν3 + 48ν2 − 20ν − 1)/(8ν2 − 4ν − 1)3 and J (ν) :=
512ν6−768ν5+192ν4+128ν3+408ν2−228ν−1. Evaluation of P3(0) = P3(−1/4)

is skipped to the next paragraph. Now, denominators of H(ν), P0(0), and P2(0) switch
sign at ν = ν+. Furthermore the numerator of H(ν) switch sign at ν = νa in the
interval of interest. As for J (ν), it has two real roots as well. They are −0.00435212
and νb ≈ 0.50435212. Note that J (ν) suffers a sign change in the interval (1/2, νa)

which is excluded from our analysis.
At Y =−1/4 we have the following polynomial evaluations and factorizations by a

CAS.

P0(−1/4) = (1 − ν)3νH(ν), (62)

P1(−1/4) = −(1 − ν)2(8ν + 1)H(ν), (63)

P2(−1/4) = 1

16
(1 − ν)2(4ν − 1)2 H(ν), (64)

P3(−1/4)p2 = P3(0)p2 (65)

= (1 − ν)3ν(2ν − 1)(2ν + 1)3(4ν − 1)5 H(ν)

18(8ν2 − 4ν − 1)4 . (66)

These expressions switch sign at {1/4, 1/2, νa, ν+} in the interval of interest.
Having clarified the sign situations of the polynomials in the Sturm sequence,

there appear four distinct sets to examine. δ1 = {ν ∈ (0, 1/4), κ = κIII(ν)},
δ2 = {ν ∈ (1/4, 1/2), κ = κIII(ν)}, δ3 = {ν ∈ (νa, ν+), κ = κIII(ν)}, and
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δ4 = {ν ∈ (ν+, 1), κ = κIII(ν)}. Signs of the polynomials over these sets as well as
the uniqueness of the solution is displayed in Table 1.

4.2 Case IV: κ �= 16/27 ∧ p = 0 ∧ q �= 0

p = 0 implies that

κIV(ν) = 16

9(4ν − 1)2 (67)

by Eq. (25). Upon substitution of this into Eqs. (26) and (27) we have

q = (4ν − 1)3

72((4ν − 1)2 − 3)
, (68)

r = (4ν − 1)2((4ν − 1)2 + 9)

2304((4ν − 1)2 − 3)
. (69)

The singularities of q and r at ν = ν+ do not bother us, because in this case κIV(ν+) =
16/27. Likewise, we also exclude the case where ν = 1/4, since it is the singularity
of κ by Eq. (67). The corresponding Sturm sequence is as follows.

P0(Y ) = Y 4 + qY + r, (70)

P1(Y ) = 4Y 3 + q, (71)

P2(Y ) = −3q

4
Y − r, (72)

P3(Y ) = 256r3 − 27q4

27q3 . (73)

At Y = 0 we have P0(0) = −P2(0) = r . Now, the numerator of r is always positive
and its sign is determined through its denominator easily. If ν ∈ (0, ν+)\{1/4}, then
sgn(P0)(0) = −. Whereas if ν ∈ (ν+, 1), then sgn(P0(0)) = +. This also takes care
of the sign situations of P2(0). Since P1(0) = q, it suffers a sign change at ν = 1/4
and ν = ν+. Accordingly, if ν ∈ (0, 1/4) or ν ∈ (ν+, 1), then sgn(P1(0)) = +.
Otherwise, i.e. if ν ∈ (1/4, ν+), then sgn(P1(0)) = −. For the sign designations of
P3(0) = P3(−1/4) see the next paragraph.

At Y =−1/4 we have the following factorizations through a CAS for the values of
the polynomials in Eqs. (70–73).

P0(−1/4) = ν(ν − 1)3

18(8ν2 − 4ν − 1)
, (74)

P1(−1/4) = (ν − 1)2(8ν + 1)

18(8ν2 − 4ν − 1)
, (75)

P2(−1/4) = − (ν − 1)2(4ν − 1)2

288(8ν2 − 4ν − 1)
, (76)
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P3(−1/4) = 8(ν − 1)3(2ν + 1)3(4ν2 − 2ν + 1)

27(4ν − 1)3(8ν2 − 4ν − 1)
. (77)

Observe that all of the expressions in Eqs. (74–77) suffer a sign change at ν = ν+ due
to the common quadratic factor in their denominators. Furthermore, P3(−1/4) suffers
another sign change at ν = 1/4. These two points are the only points of interest to our
analysis.

It is apparent that there are a total of three segments that is of interest in this case.
They are η1 = {ν ∈ (0, 1/4), κ = κIV(ν)}, η2 = {ν ∈ (1/4, ν+), κ = κIV(ν)}, and
η3 := {ν ∈ (ν+, 1), κ = κIV(ν)}. The sign situations and the uniqueness of the root
for this case is also summarized in Table 1.

4.3 Case V: κ �= 16/27 ∧ p = 0 ∧ q = 0

By Eq. (26) q = 0 is realized for ν = 1/4 only. However in this case p �= 0. Hence the
common solutions of p = q = 0 constitute an empty set for positive κ and ν ∈ (0, 1)

and this case is trivial.

5 Discussion

We have presented a thorough analysis of the equilibrium of ammonia synthesis by
exploring 5 major cases and signs of 296 expressions. Existence and uniqueness of the
equilibrium solution are established. In the proof of uniqueness the use of the intensive
quantity ν reduced the dimensionality of the parameter space from three to two. This
enabled an easy illustration of the various cases for the signs of the polynomials in
the Sturm sequence through a 2-D diagram. When the number of distinct chemical
elements that appear in the equilibrium system is two, such an easy visualization can
always be produced. This applies to the formation equilibria of all binary compounds
in the gas phase. On the other hand when the number of distinct elements that appear
in a reaction exceeds two, the diagrams for the signs of the polynomials are more
than 2-D. In that case visualization of the level sets becomes difficult if not entirely
impossible.

An alternative route to the uniqueness proof given in this paper can be taken by
the following observation. For a polynomial P(X) of degree n, define Y := (X − a)/

(b − X) and

Q(Y ) := (1 + Y )n P

(
a + bY

1 + Y

)
. (78)

The number of positive roots of Q(Y ) is equal to the number of roots of P(X) in (a, b).
Indeed as X varies in (a, b), Y varies in (0,∞). Counting positive roots in a Sturm
sequence requires the evaluation of the polynomials at 0 and ∞. However, sgn(P(0))

is the sign of the constant term of P(X) and sgn(P(∞)) is the sign of its leading
coefficient for any polynomial. Therefore an extension of the interval to a positive
semi infinite one without altering the root count seems to eliminate the polynomial
evaluation at a and b. The price to be paid is the evaluation of a new polynomial Q(Y )
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which is unlikely to be in a depressed form. The Sturm sequence of a polynomial that
is not in its depressed form is more complicated.

Recent research in computational algebraic geometry has produced methods that
have better specialization properties and do not necessitate the computation of Sturm
sequence anew for each case. These methods rely on Sylvester matrices [12] and
Sturm–Habicht [11] sequences. Their efficiency has a potential for exploitation in
more complicated problems.

Evaluation of the signs of the polynomials in a Sturm sequence is relatively easy
if the parameters that specify the equilibrium are <3. Then the algebraic sets where
the signs are examined form 0-, 1-, and 2-D point sets which are easily visualized.
Future research of more complicated equilibrium problems, in which visualization is
impossible, must integrate or develop techniques that are not visual to identify the
domains of constant sign for polynomials.
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